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Abstract
Asymptotic homogenisation offers a way to efficiently analyse the mechan-
ical behaviour of multiscale configurations. But near a multiscale bound-
ary, the homogenisation strategy should be modified, as the underlying
periodicity assumption breaks down there. In this article, we introduce a
machine-learning-based asymptotic homogenisation and localisation scheme to
formulate such boundary layer effects. To this end, we define a set of bound-
ary layer cells, where external loading conditions are imposed on one side of
the cell, and matching conditions with the interior periodic cells are imposed
on the opposite side. The formulation is also extended to cover situations where
the multi-scale structure is not fully periodic, but spatially varying. Implied
from the asymptotic results, neural networks can be trained to memorise the
interrelationship between key local quantities, such as the magnitude of the
local maximum von Mises stress, and the local mechanical and geometric fea-
tures. Equipped with the trained neural networks, the online calculation for
key (boundary-localised) quantities of interest under arbitrary loading condi-
tions is expected to be accelerated substantially. Numerical examples are further
presented to show the reliability of the proposed work for boundary stress
prediction.
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1 INTRODUCTION

Configurations decorated with microstructure provide an excellent solution when the issue of lightweight is in concern,
and their vast applications have already been seen in engineering fields like aerospace,1 acoustics,2 biomedical appli-
cations,3 etc. Over the past few decades, advances in high-performance computing and additive manufacturing keep
catalysing the need for multi-scale modelling of materials and systems, and they also put forward requirements for reliable
and efficient assessment of the performance of such multi-scale structures for actual service processes.

For multi-scale configurations (MSCs), computation of their localised properties, such as the structural strength
and/or the weakest point, still faces challenges. If brute force with extremely fine mesh is carried out directly on
multi-scale structures, detailed information of every point is then available. However, this inevitably leads to huge com-
putational costs,4,5 some of which may be infeasible for realisation. It is therefore of great practical significance to develop
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reliable and efficient multi-scale methods and algorithms, which can properly manage computational efficiency and
modelling accuracy. For certain composite multi-scale structures, self-consistent methods, and generalised self-consistent
methods provide analytical solutions for a class of simple single inclusion problems. However, for fairly complicated cases,
the ideas of treating them as a homogeneous continuum may offer a way out of computational burden. Among them,
computational homogenisation (CH) methods rooted in the concept of representative volume element (RVE) have been
regarded as a routine operation for analysing MSC.6-10 They feature a fairly clear mechanical background and the possi-
bility of dealing with highly complex issues, such as nonlinearity,6,7 including large-strain,8 heterogeneous materials,10

etc. Another widely used multi-scale computational strategy stems from the asymptotic homogenisation (AH) method,
which links the microscopic characteristics and the equivalent properties through rigorous mathematical derivations, and
decomposition of a multi-scale problem into two problems defined on different length scales can be realised. Such an AH
way of multi-scale modelling was first devised for the analysis of linear periodic structures11,12 and later extended to cover
topics of stress-strain nonlinearity,13,14 damage,15,16 higher-order expansion,17 and spatially varying microstructure,18 etc.

All the aforementioned methods enjoy their conceptualised high efficiency in their own fields. But when treating
MSCs in a homogenised sense, such homogenisation-based approaches necessitate modification if localised performance
indices, such as the strength at the weakest site, are of interest. In the past few decades, cascade of research on CH for
local stress recovery have emerged, for example, semi-analytical methods including the Transformation Field Analysis
(TFA)19,20 and Non-uniform TFA (NTFA),21,22 multi-scale computational techniques including the FE2 method9,23 based
on finite element analysis (FEA), methods based on Fast Fourier Transforms,24 and so on. These methods are all proposed
for enabling the recovery of the information of localised fields, but often at the cost of suffering from severe efficiency
problems.25 For AH approaches, efforts for the recovery of key localised stress components also never cease. Lefik and
Schrefler26 pointed out that the homogenisation process will result in two different stress tensors: one is the mean stress
field, denoting results of homogenised rather than real structures, and the other is the local stress field, relating to each
representative cell. This means that the AH approach is not just limited to giving compliance of MSCs, but can also capture
the local behaviour of micro-structures. But such an extraction operation relies on the storage of every cell result and may
cause memory explosion when dealing with a large number of micro cells or graded microstructures.

To enhance the efficiency of AH approaches, especially for the extraction of key localised quantities in graded
microstructures, a combinative use of machine learning (ML) and AH has been suggested.27 But there remain some
problems. Most homogenisation methods, including the mentioned RVE methods, suppose that the object under study
extends infinitely along the direction where the cell possesses periodicity, therefore leading to a failure to acquire a good
approximation near the boundary of the actual configuration (with a finite size). Moreover, boundaries and interfaces are
likely the places where configurational damage initiation begins, thus a scheme to accurately and efficiently capture the
localised strength near boundaries should supplement the judgement basis of structural safety. It is generally believed
that there are two main reasons why the otherwise reliable AH model in the interior region behaves irregularly near the
boundary. Firstly and intuitively, the cell can no longer be deemed to be locally periodic along the boundary normal; sec-
ondly, the stress field satisfies a stress boundary condition (BC) not just in a mean sense but a local one. So, due to the
presence of such a “boundary layer (BL),” the AH formulation should be modified accordingly.

Earlier attempts on considering BL effects under the AH framework were firstly made in a theoretical way,26,28-30 where
a “BL corrector” is introduced to the first-order expansion term of the overall displacement field u𝜖 to take into account
the effect of BL on the system. Such an idea of including a BL term to cope with the periodicity loss near a multi-scale
boundary was further developed, such as the computation of steady thermal conduction28 and boundary localised stresses
for composite materials, such as the stratified materials29,30 and superconducting coils.26 Here the “BL corrector” retains
periodicity regarding the micro variables tangentially along the boundary, and decays exponentially regarding the micro-
scopic variable along the boundary normal.31 Thus the final solution to the global stress field is approximated by the sum
of the original AH result and the BL correction term. The idea of BL correctors points out a clear path to capture the
characteristic behaviour at multi-scale boundaries, but it also brings with it several limitations for further application

• Existing theoretical studies are mainly focused on periodic structures, where the cell problems to be solved are relatively
unitary;

• The boundary shapes they dealt with were all simple cases of straight lines, which may not be easy to implement for
configurations with curved boundaries;

• The introduction of “BL corrector” is accompanied with a BL correction problem defined over a domain that is
infinitely extended towards the multi-scale interior. This inevitably introduces ambiguities on determining the BL size
in computation.
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Given the above limitations, tuning the concept of BL corrector in an approximate but computational-friendly man-
ner seems like an intuitive solution. Recently, local stress recovery associated with the BL has been studied from a purely
computational aspect based on finite volume element32 and multi-scale eigenelement method.33 Both of them adopted a
two-step strategy, that is, (1) the computation of homogenisation results of the interior region (region except the BL); 2)
the reconstruction of the BL using direct FEA, with the original outer BCs and displacements given by interior homogeni-
sation serving as its new BCs. In this paper, we introduce, with regard to fully periodic interior cells, the concept of BL
cells that span a limited number (one period to be precise, as systematically investigated by Drago and Pindera34) of con-
stituent cells towards the interior of the porous structure. Instead of demanding exponential decay at infinity, as done in
the rigorous treatment, we impose matching conditions of certain stress components on the BL cell boundary that virtu-
ally joins with an interior periodic cell. Thus a BL problem can be established, and its predominant discrepancy against
an interior cell problem lies in the BCs imposed on surfaces orthogonal to the boundary normal. On the outer boundary
of the BL cell, it is imposed with the actual BCs applied to the original MSCs. On the opposite surface, traction BCs in con-
sistency with the virtual interior cell problem are considered. In this viewpoint, a BL cell problem must be in association
with an interior cell problem.

The solutions for the BL cell problem mentioned above contain key information about the desired localised stress
components, and ML models are trained to store such information. The input arguments of the neural network (NN) in
use include the descriptions of the microstructural BL cell, the actual BCs, the on-site mean-field stress, as well as the key
parameters summarising the load from the adjacent virtual interior cell problem. Upon the completion of the training
of such NNs, the online computation for the homogenised problem suffices as the localised quantities of interest are
obtained by just calling the NN with the input arguments evaluated properly.

For method verification, the performance of the NNs constructed above in predicting the local maximum von Mises
stresses (LMvMSes) near the structure boundary are examined through several numerical examples, including MSCs
with various microstructural geometries and BCs. Two types of NNs are involved here, they are constructed according
to the interior cells and BL cells, respectively. Comparison between values predicted by both NNs with the benchmark
obtained from the direct fine-mesh FEA of the porous structure shows that the BL networks do give accurate and reliable
predictions to the LMvMSes close to the boundary in all the given examples, while in some cases, values predicted by the
NN constructed based on the interior cell can also be used as accurate approximations, but they are not ‘reliable’ though,
since the physical model of the interior cell is not reasonable near the edge.

The remainder of this article is structured as follows. The detailed derivation of the BL cell problem subject to displace-
ment BCs in a periodic structure is given in Section 2. Such procedures are further generalised to other cases including
stress BCs and spatially varying multi-scale configurations (SVMSC) in Section 3. In Section 4, the specific implementa-
tion processes of the ML are introduced on the basis of the obtained asymptotic expressions. And the NNs corresponding
to different regions, BCs and geometries are pre-trained. This is followed by the verification, the predicted values are com-
pared with the results given by direct fine-scale computation in Section 5 so as to demonstrate the feasibility and reliability
of the present work. A summary and extended discussion comprise of Section 6.

Unless specified, indices with Greek letters, such as 𝛼, 𝛽, etc., appearing in this article consistently represent the incom-
plete set of indices excluding that used to capture variation along the boundary normal, that is, 𝛼, 𝛽 = 1, … ,N − 1, here
N denotes the spatial dimension, while those with Latin letters, such as i, j, k, l, · · ·, have a full family of indices from 1 up
to N. In addition, the Einstein summation rule is applied to both the Greek indices and the Latin indices throughout the
article.

2 BASIC ASYMPTOTIC FORMULATION OF MICROSTRUCTURAL
BOUNDARY LAYER

The current work is aimed to model microstructural BL effects in a more general sense. However, to help the readers be
familiarised with the modelling procedure, we are focused on periodic configurations subject to displacement BCs for the
moment, and its generalisation will be considered in Section 3.

2.1 Problem settings

A regular rectangular domain infilled with periodic microstructure in space RN , where N = 2 or 3 represents the spatial
dimension, is considered here in first, with an illustrative example shown in the upper panel of Figure 1. The overall
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F I G U R E 1 Representation of an multi-scale configuration. The whole domain Ω is divided into two parts: the interior region Ω ⧵ ̃Ω
and the boundary layer region ̃Ω.

rectangular domain is denoted by Ω, with 𝜕Ω being the corresponding (overall) boundary. Inside Ω, the region occupied
by solids is denoted byΩs, whose boundary counterpart takes the notation of 𝜕Ωs. Thus the actual boundary of this MSC
as shown in Figure 1 should consist of two sections. One is the boundary sections in the exterior where external BCs,
such as the displacement BC on 𝜕Ωd or the traction BC on 𝜕Ωt, can be applied. Mathematically, such boundary sections
are contained in the set of

𝜕Ωd ∪ 𝜕Ωt = 𝜕Ω ∩ 𝜕Ωs. (1)

The other set of the multi-scale boundary section is formed by boundary pieces in the interior of Ω, that is the inner
surface due to the presence of micro-structure, and they are collectively summarised by 𝜕Ωi.

A multi-scale structure with an overall characteristic length L is filled in Ω, and its constituent unit cells is charac-
terised by another length parameter h. Given the geometrically multi-scale nature of the configuration, h ≪ L, and a small
parameter 𝜖 is then introduced by

𝜖 = h
L
≪ 1. (2)

Note that the performance of a multi-scale structure takes place simultaneously at both the macroscopic and the
microscopic levels. Here we introduce another coordinate system x𝜖1 − x𝜖2, where a superscript ‘𝜖’ indicates that the spatial
variation on both length scales is considered simultaneously.

Therefore, the equilibrium state of the solid part of the MSC is described by

−
𝜕𝜎ij

𝜕x𝜖j
= fi, in Ωs, (3)

for i = 1, · · · ,N, where f is the body force per volume, 𝝈 is the structural stress field whose components are related to
those of the strain field 𝜺 through the elasticity tensor Cijkl(i, j, k, l = 1, … ,N),

𝜎ij = Cijkl𝜀kl = Cijkl
𝜕uk

𝜕x𝜖l
, (4)

with u being the displacement field. Note that the fourth-order tensor possesses a certain symmetry: Cijkl = Cjikl = Cklij.
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Meanwhile a set of BCs should be proposed there, together with the governing Equation (3). First, the boundaries
from the microstructural interior 𝜕Ωi, as illustrated by Figure 1, should be in a traction-free state, that is,

𝜎ijmj = Cijkl
𝜕uk

𝜕x𝜖l
mj

|
|
|
|
|𝜕Ωi

= 0. (5)

On the microstructural exterior, we are focused in this section on displacement BCs given by

ui|𝜕Ωd
= u0

i . (6)

2.2 Asymptotic expansion

2.2.1 Introduction of boundary layer cells

The fundamental assumption of micro-structures being locally periodic underlying general AH theory becomes question-
able near the domain boundary. To this end, we consider a layer of “special cells” (termed as the BL cells) connecting the
interior with the actual boundary. As shown in Figure 1, the geometry of such BL cells can be identical or slightly dif-
ferent from the interior cells. Note that there are certain scenarios where cells near the domain boundary bear different
geometric profiles against the cells in the interior for practical purpose. For instance, a solid frame is usually attached to
the periphery of an MSC to facilitate the external loadings.

Due to the presence of such BLs, the computational domain is divided into two parts: the interior region Ω ⧵ ̃Ω and
the BL region ̃Ω. Here the symbol “∼” is used to distinguish quantities evaluated in the BL from those in the interior,
and the BL thickness is set to be d. Aiming to capture the “multi-scale” feature of the model, non-dimensionalisation is
carried out for spatial variables and some other quantities, that is,

x𝜖 = x𝜖

L
, u = u

L
, Cijkl =

Cijkl

C1111
, (7)

where L is recalled to be the length of the specimen, the “–” symbol over a letter denotes its non-dimensional counterpart,
and the meaning of which will be consistent in the subsequent derivation.

To further investigate the influence of microstructure, we amplify the original scale variables by dividing the cell
length to create a coordinate system z1 − z2 in the microscopic scale, and the corresponding variable z is thus defined by

z = x
h
= x

𝜖

. (8)

Therefore, the original periodic cell domain is non-dimensionalised to Υ = [0, 1]N , and the BL cell becomes Υ̃ =
[0, 1]N−1 × [0, 𝜁], where the non-dimensional BL thickness equals

𝜁 = d∕h. (9)

Inside the two types of cells, the solid regions are denoted by Υs and Υ̃s, respectively, with 𝜕Υs and 𝜕Υ̃s being the
corresponding solid boundaries.

Here without loss of generalities, we can assume that the boundary section for BL consideration always coincides
with the xN = 0 line/plane. Once boundary sections which are located at different places or with a different boundary
orientation are under investigation, one may refer to Appendix A to see the linkage between the formulation then and
the present situation.

Compared with the interior cells, a BL cell accommodates more various BCs. Here a noting subindex is affiliated
with a boundary section in the BL cell Υ̃, so as to indicate the type of BCs imposed there, and they are illustrated
in the bottom left panel of Fig. 1 and get summarised as follows. 𝜕Υ̃p indicates the periodic boundary that is a part
of the cell exterior boundary orthogonal to the local tangent plane at the on-site boundary point; 𝜕Υ̃m indicates the
boundary section where a matching of traction BCs with a virtual interior cell is required; 𝜕Υ̃e denotes the boundary
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section that coincides with the actual BC applied to the overall domain; 𝜕Υ̃i denotes the interior boundary section
within Υ̃ where a traction-free state is declared. And m represents the outer normal at a point on the boundary of a cell
entity.

2.2.2 Asymptotic formulation with the interior cell

The treatment of the original Equation (3) in the interior cell Υ is the same as that in traditional AH models, that is, one
can consider its asymptotic behaviour in a scale-separated form. Thus, the two-scale variable x𝜖i can be expressed as two
terms related to a set of macroscopic variable xi and the set of microscopic variable zi defined by Equation (8). It is noted
that scale separation emerges as the spatial gradient with respect to x𝜖 is considered. Upon the use of the differentiation
chain rule, we have

𝜕

𝜕x𝜖i
= 𝜕

𝜕xi
+ 1

𝜖

𝜕

𝜕zi
. (10)

Note that the AH formulation over the periodic cell has been discussed properly in literature, for example, Reference 11.
Here we just list the key results for further usage.

1) The asymptotic expansion of the displacement and stress fields in terms of the small parameter 𝜖 reads

ū𝜖

i ∼ ū(0)i

(

x
)

+ 𝜖ū(1)i

(

x; z
)

+ · · · ∼ ūH
i
(

x
)

+ 𝜖

(

𝜉
st
i
𝜕ūH

s

𝜕xt

)

+ 
(

𝜖
2); (11a)

𝜎ij ∼ 𝜎
(0)
ij + 𝜖𝜎

(1)
ij + · · · ∼

(

Cijkl +Cijst
𝜕𝜉

kl
s

𝜕zt

)
𝜕ūH

k

𝜕xl
+ (𝜖), (11b)

where uH denotes the (non-dimensional) homogenised displacement field; 𝜉st
i form a third-order tensor which is the

solution of certain cell problems defined on the interior periodic cell.
(2) The equivalent macroscopic elasticity tensor of the periodic cell is formed by

C
H
ijkl =

∫Υs

(

Cijkl +Cijst
𝜕𝜉

kl
s

𝜕zt

)

dz. (12)

(3) A homogenised equilibrium equation for uH of the interior region is established by

𝜕

𝜕xj

(

C
H
ijkl

𝜕ūH
k

𝜕xl

)

= 0, in Ω ⧵ ̄̃Ω. (13)

2.2.3 Expansion of the field variables in the BL region

Due to the absence of periodicity along the surface normal, the structural behaviour in the BL region should be analysed
exclusively, while its matching with the interior cell needs to be taken into account. In the BL region, the geometric domain
of the BL cell can be expressed as 𝜕Ω × Υ̃, with 𝜕Ω =

{

x|xN = 0
}

. Note that on 𝜕Ω, differentiation is only meaningful
along any direction in perpendicular to the on-site surface normal.As a result, the term 𝜕∕𝜕xN should no longer appear
as the scale get separated, that is,

𝜕

𝜕x𝜖𝛼
= 𝜕

𝜕x𝛼
+ 1

𝜖

𝜕

𝜕z𝛼
; 𝜕

𝜕x𝜖N
= 1

𝜖

𝜕

𝜕zN
. (14)

It is recalled that the Greek subindex 𝛼 here is adopted implying that consideration is only for the (N − 1) variables
that are parallel to the on-site tangent plane. In the BL region, variation along the surface normal is merely due to
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T A B L E 1 Asymptotic expansion in both the interior and the BL regions as shown in Figure 1.

Interior region Boundary layer region

Rescale z = x∕𝜖 z = x∕𝜖

Free xi ∈ Ω ⧵ ̄̃Ω, zi ∈ Υs x
𝛼
∈ ̄̃Ω, zi ∈ Υ̃s

Variables i = 1, … ,N 𝛼 = 1, … ,N − 1; i = 1, … ,N

Scale 𝜕

𝜕x𝜖i
= 𝜕

𝜕xi
+ 1

𝜖

𝜕

𝜕zi

𝜕

𝜕x𝜖
𝛼

= 𝜕

𝜕x
𝛼

+ 1
𝜖

𝜕

𝜕z
𝛼

Separation 𝜕

𝜕x𝜖N
= 1

𝜖

𝜕

𝜕zN

the micro-structural presence measured in zN . Therefore, the displacement and stress fields in the BL region should be
asymptotically expanded by

ũ
𝜖

i ∼ ũ
(0)
i
(

x𝛼, 0; z
)

+ 𝜖ũ
(1)
i
(

x𝛼, 0; z
)

+ · · · ;

̄̃𝜎ij ∼
1
𝜖

̄̃𝜎
(−1)
ij + ̄̃𝜎

(0)
ij + · · · =

1
𝜖

Cijkl
𝜕ũ

(0)
k

𝜕zl
+Cijk𝛼

𝜕ũ
(0)
k

𝜕x𝛼
+Cijkl

𝜕ũ
(1)
k

𝜕zl
+ · · · , (15)

respectively, where i, j, k, l = 1, · · · ,N; 𝛼 = 1, · · · ,N − 1; (x, z) ∈ ̄̃Ω × Υ̃s.
In Table 1, the scale separation formulas in the interior and the BL region are summarised in a comparative manner.

2.3 Asymptotic analysis of the boundary layer effects

Now the asymptotic behaviour of Equation (3) in the BL region ̄̃Ω is investigated. For simplicity, we temporarily neglect
the role of the body force f.

2.3.1 Leading-order formulation: preparation

At the leading order
(


(

1∕𝜖2)), all conditions on the boundary sections of Υ̃s should be homogeneous, because the loads
applied never exceeds (1). Therefore, the cell problem at 

(

1∕𝜖2) is obtained as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

𝜕 ̄̃𝜎
(−1)
ij

𝜕z̄j
= 𝜕

𝜕z̄j

(

̄Cijkl
𝜕 ̄̃u(0)k

𝜕z̄l

)

= 0, in Υ̃s; (16a)

̄Cijkl
𝜕 ̄̃u(0)k

𝜕z̄l
mj

|
|
|
|
|
|𝜕Υ̃i

= 0; (16b)

̄̃u(0)i ,

𝜕 ̄̃u(0)i

𝜕z̄j
periodic on 𝜕Υ̃p; (16c)

̄Cijkl
𝜕 ̄̃u(0)k

𝜕z̄l
mj

|
|
|
|
|
|𝜕Υ̃m

= ̄Cijkl
𝜕ū(0)k

𝜕z̄l
mj

|
|
|
|
|
|𝜕Υm

= 0; (16d)

̄̃u(0)i
|
|
|𝜕Υ̃e

= ū0
i . (16e)

It can be verified with ease that for problem (16) to hold, the zero-order displacement field of BL ũ
(0)
i should be

independent of z, that is,

ũ
(0)
i (x; z) = ũ

(0)
i (x). (17)
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Compared with the expansion for the inner displacement field given by Equation (11a), Equation (17) implies that
the leading-order displacement of the interior region can be naturally extended to the domain boundary, that is,

ū(0)i
|
|
|xN=0

= ũ
(0)
i . (18)

2.3.2 First-order formulation: derivation of BL cell problems

At the first order ((1∕𝜖)), the BL formulation is established in regard with the interior cell it joins with, as shown in
Figure 2. With the BCs on different sections of the BL cell Υ̃ identified, the problem describing the force-equilibrated state
at (1∕𝜖) in the BL cell reads

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

𝜕 ̄̃𝜎
(0)
ij

𝜕z̄j
= 𝜕

𝜕z̄j

(

̄Cijk𝛼
𝜕 ̄̃u(0)k

𝜕x̄𝛼
+ ̄Cijkl

𝜕 ̄̃u(1)k

𝜕z̄l

)

= 0, in Υ̃s; (19a)

(

̄Cijk𝛼
𝜕 ̄̃u(0)k

𝜕x̄𝛼
+ ̄Cijkl

𝜕 ̄̃u(1)k

𝜕z̄l

)

mj

|
|
|
|
|
|𝜕Υ̃i

= 0; (19b)

̄̃u(1)i ,

𝜕 ̄̃u(1)i

𝜕z̄j
periodic on 𝜕Υ̃p; (19c)

(

̄Cijk𝛼
𝜕 ̄̃u(0)k

𝜕x̄𝛼
+ ̄Cijkl

𝜕 ̄̃u(1)k

𝜕z̄l

)

mj

|
|
|
|
|
|𝜕Υ̃m

= �̄�
(0)
ij mj

|
|
|𝜕Υm

; (19d)

̄̃u(1)i
|
|
|𝜕Υ̃e

= 0. (19e)

It can be verified that the solution for problem (19) should take the form of

ũ
(1)
i = 𝜉

s𝛼
i
𝜕ū(0)s

𝜕x𝛼
+ �̃�

st
i
𝜕ū(0)s

𝜕xt
, (20)

F I G U R E 2 Demonstration of the actual boundary conditions (BCs) associated with a boundary layer (BL) cell on the left edge of the
multi-scale configuration. The boundaries of voids interior are represented by the notation 𝜕Υ̃i, on which traction-free BC (19b) is imposed;
the upper and lower ones marked in blue represents periodic boundaries (19c) on 𝜕Υ̃p; the boundary section on the right side of the BL cell,
as marked in red, represents the boundary 𝜕Υ̃m, on which matching condition with the interior cell is imposed, that is, Equation (19d); the
boundary section on the left side of Υ̃ in yellow represents the outer boundary 𝜕Υ̃e, which is set to be fixed here, that is, Equation (19e).
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for i = 1, … ,N, where the two third-order tensors ̃𝝃 and �̃� satisfy

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

𝜕

𝜕z̄j

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄Cijkl
𝜕𝜉

s𝛽
k

𝜕z̄l

)

= 0, in Υ̃s; (21a)

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄Cijkl
𝜕𝜉

s𝛽
k

𝜕z̄l

)

mj

|
|
|
|
|
|𝜕Υ̃i

= 0; (21b)

𝜉
s𝛽
i ,

𝜕𝜉
s𝛽
i

𝜕z̄j
periodic on 𝜕Υ̃p; (21c)

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄Cijkl
𝜕𝜉

s𝛽
k

𝜕z̄l

)

mj

|
|
|
|
|
|𝜕Υ̃m

= 0; (21d)

𝜉
s𝛽
i
|
|
|𝜕Υ̃e

= 0, (21e)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

𝜕

𝜕z̄j

(

̄Cijkl
𝜕�̃�

st
k

𝜕z̄l

)

= 0, in Υ̃s; (22a)

̄Cijkl
𝜕�̃�

st
k

𝜕z̄l
mj

|
|
|
|
|𝜕Υ̃i

= 0; (22b)

�̃�
st
i ,

𝜕�̃�
st
i

𝜕z̄j
periodic on 𝜕Υ̃p; (22c)

̄Cijkl
𝜕�̃�

st
k

𝜕z̄l
mj

|
|
|
|
|𝜕Υ̃m

=

(

̄Cijst + ̄Cijkl
𝜕𝜉

st
k

𝜕z̄l

)

mj

|
|
|
|
|
|𝜕Υm

; (22d)

�̃�
st
i
|
|𝜕Υ̃e

= 0, (22e)

respectively.
Equation (20) expresses ũ

(1)
i , the displacement field in the BL region, as the superposition of two terms, each one is

given by means of the product of a function solely on x and the component of a third-order tensor to be solved for. Here
problems (21) and (22) are collectively called the BL cell problems. To guarantee uniqueness of the solutions for the above
two BL cell problems, a zero-mean condition is applied to both ̃𝝃 and �̃�, that is,

∫Υ̃s

𝜉

s𝛼
i dz = 0,

∫Υ̃s

�̃�
st
i dz = 0. (23)

It is noted that Equation (21) defines a boundary value problem as such: an equilibrated BL cell with fixed outer bound-
ary 𝜕Υ̃e, a traction-free BC on the opposite side and periodic BCs on the other two sides. While for the BL cell problem
(22), the matching conditions (22d) of certain stress components with the virtual interior cell have to be considered on
boundary 𝜕Υ̃m, rather than a traction-free one.

With Equations (20), (21), and (22), the leading-order stress distribution of the BL cell is expressed by

̄̃𝜎
(0)
ij =

(

Cijk𝛼 +Cijst
𝜕𝜉

k𝛼
s

𝜕zt

)

𝜕ū(0)k

𝜕x𝛼
+Cijst

𝜕�̃�
kl
s

𝜕zt

𝜕ū(0)k

𝜕xl
. (24)

It should be made clear that we here only consider the continuity of unknowns in two regions up to (𝜖).
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2.3.3 Second-order formulation: homogenisation

At the second order ((1)), the homogenisation is conducted in the BL region. This is done by firstly writing down the
force-equilibrium equation at (1), that is,

𝜕 ̄̃𝜎
(0)
i𝛼

𝜕x𝛼
+

𝜕 ̄̃𝜎
(1)
ij

𝜕zj
= 0. (25)

Integrating Equation (25) with respect to the micro variable z over the solid domain Υ̃s, gives

𝜕

𝜕x𝛼 ∫Υ̃s

̄̃𝜎
(0)
i𝛼 dz +

∫Υ̃s

𝜕 ̄̃𝜎
(1)
ij

𝜕zj
dz = 0. (26)

The second term on the left of Equation (26) can be transformed into a boundary integral with the use of Green’s formula,
that is,

∫Υ̃s

𝜕 ̄̃𝜎
(1)
ij

𝜕zj
dz =

∫
𝜕Υ̃i+𝜕Υ̃p+𝜕Υ̃e+𝜕Υ̃m

̄̃𝜎
(1)
ij mj dS, (27)

where dS is the infinitesimal arclength/area taken from the cell boundary.
Several remarks are noted regarding Equation (27). Firstly, as stated in Section 2.1, no traction or pressure will be

imposed from the void interiors, so the integral on boundary 𝜕Υ̃i should vanish. Secondly, the local-periodicity assumption
indicates that the integral on boundary 𝜕Υ̃p also vanishes. Thirdly, sum of the last two integral terms is zero due to the
(𝜖) force balance condition on two opposite boundaries, that is, the total force applied on the outer boundary 𝜕Υ̃e should
be balanced with the total force due to the virtual interior cell. As a result, the boundary integral on the right side of
Equation (27) vanishes, thus the second term on the left of Equation (26) equals zero eventually, that is,

𝜕

𝜕x𝛼 ∫Υ̃s

̄̃𝜎
(0)
i𝛼 dz = 0. (28)

Incorporating Equation (24) into Equation (28) gives

𝜕

𝜕x𝛼

[

𝜕ū(0)k

𝜕x𝛽 ∫Υ̃s

(

Ci𝛼k𝛽 +Ci𝛼st
𝜕𝜉

k𝛽
s

𝜕zt

)

dz +
𝜕ū(0)k

𝜕xl ∫Υ̃s

Ci𝛼st
𝜕�̃�

kl
s

𝜕zt
dz

]

= 0, on 𝜕Ω. (29)

If we further define

̄̃
C

H
i𝛼k𝛽 =

∫Υ̃s

(

Ci𝛼k𝛽 +Ci𝛼st
𝜕𝜉

k𝛽
s

𝜕zt
+Ci𝛼st

𝜕�̃�
k𝛽
s

𝜕zt

)

dz; (30a)

̄̃
C

H
ijkN =

∫Υ̃s

Cijst
𝜕�̃�

kN
s

𝜕zt
dz, (30b)

Equation (29) can be simplified as

𝜕

𝜕x𝛼

(

̄̃
C

H
i𝛼k𝛽

𝜕ūH
k

𝜕x𝛽
+ ̄̃

C
H
i𝛼kN

𝜕ūH
k

𝜕xN

)

= 0, on 𝜕Ω, (31)

where the indices 𝛼, 𝛽 = 1, … ,N − 1.
Note that ̄̃

C
H
i𝛼kl defined through Equations (30) play a same role as the surface elasticity moduli introduced in clas-

sical Gurtin–Murdoch surface elasticity theory.35,36 Several issues should be mentioned in regards. Firstly, from their
subindices, it can be observed that the range of the second index 𝛼 = 1, … ,N − 1 differs from that of its other indices
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i, k, l = 1, … ,N. Hence ̄̃
C

H
i𝛼kl bear N3 × (N − 1) entries, distinguishing it from the normal fourth-order elasticity ten-

sor defined in the domain interior. Secondly, the (non-dimensional) surface elasticity coefficients (SEC) ̄̃
C

H
i𝛼kl also bear

certain symmetry about the components, but only in the plane tangent to the overall domain boundary. Thirdly, experi-
mental evaluation of the SEC still faces difficulties for the moment, but suggestions on their numerical evaluation upon
homogenising the underlying atomic structures have been proposed.37

Equation (31) offers to describe the actual force-equilibrium state in the vicinity of the multi-scale boundary. It is an
equation defined on a manifold, which may bring about difficulties in finding its numerical solutions, especially when
the profile of the boundary is of certain degree of complexities.

2.4 Energy formulation

The multi-scale behaviour formulated as above can also be studied from a perspective of system energy. Firstly, for a
deformed multi-scale body in elastic stage, its (non-dimensional) strain energy is defined by

 = 1
2 ∫Ω

𝜎ij
𝜕ūi

𝜕x𝜖j
dx𝜖

, (32)

where the superscript ‘𝜖’ implies the corresponding variable links both the macro and micro variables. In the context of
homogenisation, integration over a multi-scale domain, with Equation (32) being an example, can be reformulated in a
scale-separated manner.38 It relies on an asymptotic formula of

lim
𝜖→0 ∫Ω⧵ ̄̃Ω

h𝜖(x𝜖) dx𝜖 =
∫Ω⧵ ̄̃Ω ⨍Υ

h(0)(x; z) dz dx, (33)

where h𝜖(x𝜖) is the original quasi-periodic function, and h(0)(x; z) is the leading-order for its two-scale expansion.
In a similar sense, the idea can be generalised to an asymptotic formula associated with the BL, that is,

lim
𝜖→0 ∫ ̄̃Ω

h𝜖(x𝜖) dx𝜖 =
∫
𝜕Ω

𝛿

⨍Υ̃
h(0)(x; z) dz dSx, (34)

where 𝛿 = d∕L is the non-dimensional thickness of the BL, dSx represents the infinitesimal arclength on boundary
𝜕Ω. A short bar added to the integral sign indicates the result is averaged over the integration domain: ⨍Υ h(x; z) dz =

1
|Υ|
∫Υ h(x; z) dz, with |Υ| being the area or volume of the analysed cell.
With Equation (34), one can calculate the elastic energy in the vicinity of the overall MSC boundary in two steps. First,

the (homogenised) elastic energy density is calculated through integrals over the BL cell. Note that upon integration over
the BL cell, the obtained quantity becomes homogenised and is defined merely on the macroscopic boundary. Therefore,
this energy density quantity is effectively the surface energy density. Then the system surface energy should be calculated
by integrating the surface energy density over the whole surface 𝜕Ω.

Equipped with such strategy, we can combining Equations (32) and (33) to get the (1) approximation of
(non-dimensional) energy formulation due to the interior region

 in ≈
1
2 ∫Ω⧵ ̄̃Ω ∫Υs

𝜎
(0)
ij

(

𝜕ū(0)i

𝜕xj
+

𝜕𝜉
st
i

𝜕zj

𝜕ū(0)s

𝜕xt

)

dz dx. (35)

Note that the second term on the right of Equation (35) can be eliminated by using the BCs and (1∕𝜖) equilibrium
equation, that is,

∫Υs

𝜎
(0)
ij

𝜕𝜉
st
i

𝜕zj

𝜕ū(0)s

𝜕xt
dz =

𝜕ū(0)s

𝜕xt

⎛

⎜

⎜
⎝
∫
𝜕Υi+𝜕Υp

𝜎
(0)
ij mj𝜉

st
i dS −

∫Υs

𝜕𝜎
(0)
ij

𝜕zj
𝜉

st
i dz

⎞

⎟

⎟
⎠

= 0. (36)
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Thus the non-dimensional leading-order elastic energy due to the domain interior is calculated by

 in ≈
1
2 ∫Ω⧵ ̄̃Ω ∫Υs

𝜎
(0)
ij dz

𝜕ū(0)i

𝜕xj
dx = 1

2 ∫Ω⧵ ̄̃Ω
C

H
ijkl

𝜕ū(0)i

𝜕xj

𝜕ū(0)k

𝜕xl
dx. (37)

The leading-order non-dimensional elastic energy due to the BL region can also be calculated with reference to
Equation (34), that is,

̄̃
 b ≈

𝛿

2 ∫
𝜕Ωd
∫Υ̃s

(

̄̃𝜎
(0)
i𝛼

𝜕ū(0)i

𝜕x𝛼
+ ̄̃𝜎

(0)
ij
𝜕ũ

(1)
i

𝜕zj

)

dz dSx

= 𝛿

2 ∫
𝜕Ωd
∫Υ̃s

(

̄̃𝜎
(0)
i𝛼

𝜕ū(0)i

𝜕x𝛼
+ ̄̃𝜎

(0)
ij
𝜕𝜉

s𝛼
i

𝜕zj

𝜕ū(0)s

𝜕x𝛼
+ ̄̃𝜎

(0)
ij

𝜕�̃�
st
i

𝜕zj

𝜕ū(0)s

𝜕xt

)

dz dSx, (38)

similar as in the operation of Equation (36), the two integral terms concerning ̃𝝃 and �̃� can be further simplified by

∫Υ̃s

̄̃𝜎
(0)
ij
𝜕𝜉

s𝛼
i

𝜕zj

𝜕ū(0)s

𝜕x𝛼
dz =

𝜕ū(0)s

𝜕x𝛼 ∫𝜕Υ̃m

̄̃𝜎
(0)
ij mj𝜉

s𝛼
i dS; (39a)

∫Υ̃s

̄̃𝜎
(0)
ij

𝜕�̃�
st
i

𝜕zj

𝜕ū(0)s

𝜕xt
dz =

𝜕ū(0)s

𝜕xt ∫𝜕Υ̃m

̄̃𝜎
(0)
ij mj�̃�

st
i dS, (39b)

where the fixed displacement BCs on the exterior boundary section 𝜕Υ̃e has been used.
As a corollary, the leading-order (non-dimensional) energy stored in the BL region of an MSC is given by

̄̃
 b ≈

𝛿

2

(

∫
𝜕Ωd

̄̃
C

H
i𝛼kl

𝜕ū(0)i

𝜕x𝛼

𝜕ū(0)k

𝜕xl
dSx +

∫
𝜕Ωd
∫
𝜕Υ̃m

̄̃𝜎
(0)
ij mj𝜉

s𝛼
i
𝜕ū(0)s

𝜕x𝛼
dS dSx +

∫
𝜕Ωd
∫
𝜕Υ̃m

̄̃𝜎
(0)
ij mj�̃�

st
i
𝜕ū(0)s

𝜕xt
dS dSx

)

. (40)

Therefore, the total non-dimensional elastic energy stored in an MSC can roughly be evaluated by the sum of  in
and ̄̃

 b. Nonetheless, evaluating these two energy portions involves the specification of the BL region ̄̃Ω, which may
cause ambiguities. For improvement, one may introduce a (non-dimensional) bulk energy quantity which is obtained by
naturally extending the interior energy density form right to the domain boundary, that is,

 bulk =
1
2 ∫Ω

C
H
ijkl

𝜕ūH
i

𝜕xj

𝜕ūH
k

𝜕xl
dx. (41)

Here bulk differs from in by

 bulk − in =
1
2 ∫ ̄̃Ω

C
H
ijkl

𝜕ūH
i

𝜕xj

𝜕ūH
k

𝜕xl
dx = 𝛿

2 ∫
𝜕Ωd

C
H
ijkl

𝜕ūH
i

𝜕xj

𝜕ūH
k

𝜕xl
dSx, (42)

where Equation (34) has been adopted to derive the second identity of Equation (42).
With bulk defined by Equation (41), the residual amount of (non-dimensional) elastic energy is given by a quantity

 surf purely defined over the domain boundary 𝜕Ω, that is,

 surf = ̄̃
 b −

𝛿

2 ∫
𝜕Ωd

C
H
ijkl

𝜕ūH
i

𝜕xj

𝜕ūH
k

𝜕xl
dSx. (43)

Combining the expression for ̄̃
 b (Equation 40) with Equation (43), we have

 surf =
𝛿

2

[

∫
𝜕Ωd

(
̄̃
C

H
i𝛼kl −C

H
i𝛼kl

)
𝜕ūH

i

𝜕x𝛼

𝜕ūH
k

𝜕xl
dSx −

∫
𝜕Ωd

C
H
iNkl

𝜕ūH
i

𝜕xN

𝜕ūH
k

𝜕xl
dSx +

∫
𝜕Ωd
∫
𝜕Υ̃m

̄̃𝜎
(0)
ij mjũ

(1)
i dS dSx

]

. (44)

Several issues are worth being mentioned with regard to the energy quantities introduced above.
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Firstly, the energy formulation derived here is linked with the force equilibrium equations given in Section 2.3. To be
precise, the minimisation of  bulk + surf less the non-dimensional work done to the system should lead to the surface
balance equation (31).

Secondly, for elliptic Dirichlet problems, the effect introduced by the BL decays exponentially as the variable perpen-
dicular to the boundary increases.31 Thus for an MSC, the thickness of the BL (d), which is taken to be similar as the cell
size, is a small quantity compared with the overall domain size (L), that is, 𝛿 = d∕L → 0. This means

lim
𝛿→0
 surf∕ bulk = 0. (45)

Here for simplicity, the contribution from the surface energy is neglected for modelling the BL effect.

2.5 Re-dimensionalisation

To facilitate subsequent computation, we now summarise the key formulation derived above in a dimensional sense. This
is normally done by simply removing the symbol “–” in the original non-dimensional formulation. Here for simplicity, we
ignore the energy contribution from the BL of an MSC, but only consider the BL effect on the actual stress distribution. To
this end, one simply solves for the homogenised stress field 𝜎

H
ij (and the homogenised displacement field uH

i ) in the same
way as the traditional AH approach. Once the homogenised problem is solved, the actual fine-scale stress distribution
with an interior cell and a BL cell, based on Equations (11b) and (24), can be approximated by

𝜎ij ≈
(

Cijkl +Cijst
𝜕𝜉

kl
s

𝜕zt

)
𝜕uH

k

𝜕xl
; (46a)

�̃�ij ≈

(

Cijk𝛼 +Cijst
𝜕𝜉

k𝛼
s

𝜕zt

)

𝜕uH
k

𝜕x𝛼
+Cijst

𝜕�̃�
kl
s

𝜕zt

𝜕uH
k

𝜕xl
. (46b)

3 BOUNDARY LAYER FORMULATION IN MORE GENERALISED
SITUATIONS

In the previous section, the discussion is limited to the situation of spatially periodic MSC subject to displacement BCs.
However, in this section, BL formulation in more generalised scenarios will be considered. Our investigations will be
extended for SVMSC and/or for traction BCs. Throughout the section, emphasis will be drawn over the issue on how the
generalised situations differ from the reference case that is examined in detail in Section 2.

3.1 Situation with applied traction

Generalisation over the displacement type of imposed BC is firstly studied. To this end, we here consider the BC with an
applied traction field t0 on 𝜕Ωt, that is,

Cijkl
𝜕uk

𝜕x𝜖l
nj

|
|
|
|
|𝜕Ωt

= t0
i , for i = 1, … ,N. (47)

Such a change in BC should lead to hierarchic modifications as follows.

At(1∕𝜖2), the BC on the outer boundary in problem (16) should be changed to be Cijkl
𝜕ũ

(0)
k

𝜕zl
mj
|
|
|
|𝜕Υ̃e

= 0, but this does not

affect the conclusions originally drawn at this order. The leading-order BL displacement field is still found independent of
the microscopic coordinates z, and the natural extension in the interior displacement field up to the structural boundary,
that is, Equation (18) still holds.

At (1∕𝜖), traction BCs are expected on the outer cell boundary 𝜕Υ̃e. Now as the external loads are imposed both on
𝜕Υ̃e and matching boundary 𝜕Υ̃m, there is an issue on solution existence, that is, the traction BCs must be declared, such
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that the total traction applied to the BL cell vanishes. When the change in BC for the cell problem related to variable ̃𝝃,
corresponding to problem (21), is considered, Equation (21e) becomes

𝜉

s𝛽
k
|
|
|𝜕Υ̃e

= 0 ⇒

(

Cijk𝛼𝛿ks𝛿𝛼𝛽 +Cijkl
𝜕𝜉

s𝛽
k

𝜕zl

)

mj

|
|
|
|
|
|𝜕Υ̃e

= 0. (48)

But to modify the BC in cell problem (22) for variable �̃�, extra treatments are needed. Given that the (non-dimensional)
traction t

0
are a macroscopically defined field, the corresponding components can be roughly treated uniform on 𝜕Υ̃e in

the BL cell. The overall balance condition thus reads

t
0
i =

1
|𝜕Υ̃e| ∫𝜕Υ̃m

𝜎
(0)
ij mj dΓ = Σ(0)ikl

𝜕ū(0)k

𝜕xl
, (49)

where

Σ(0)ikl =
1
|𝜕Υ̃e| ∫𝜕Υ̃m

(

Cijkl + Cijst
𝜕𝜉

kl
s

𝜕zt

)

mj dΓ, (50)

are the effective and microscopically uniform traction components so as to meet the overall balance requirement.
Thus the cell problem for variable �̃� can be established if one swaps Equation (22e) by

�̃�
st
k
|
|
|𝜕Υ̃e

= 0 ⇒ Cijkl
𝜕�̃�

st
k

𝜕zl
mj

|
|
|
|
|𝜕Υ̃e

= Σ(0)ist , (51)

and the solution existence of the resulting cell problem can be ensured simultaneously.
At (1), the change in the type of imposed BC should not affect the form of the homogenisation formula, although

the effective BL formulation is different because of the change in ̃𝝃 and �̃� by Equations (48) and (51).

3.2 Spatially varying microstructures

In practical, microstructure may be filled in a region bearing irregular shape, and the infilling microstructure may have
to be gradually varying in space then, as the one shown in the right panel of Figure 3.

3.2.1 Geometric representation and spatial transformation

As discussed by Zhu et al.,18 the essence in the representation of an SVMSC is to introduce a macroscopically smooth
mapping function, say, y = y(x), such that the configuration becomes periodic when measured in y coordinates, as shown
in Figure 3.

In theory, the choice for this mapping function is rather arbitrary. But restrictions are normally required for more
practical usage. For instance, maintaining the completeness in cell geometry at multi-scale boundaries seems quite critical
for the whole structure serving as qualified tuning devices of acoustic wave. Nonetheless, for a given domain in which
microstructure will be infilled in, it is not an easy task to ensure such cell completeness at the boundary. To this end, the
mapping function here is specified to be the B-spline function, because they are often employed to determine the profile
of a component digitalised from the computer aided design platform.

In contrast with the mapping operation adopted by Zhu et al.,18 we here consider using B-spline function to map
a periodic structure to an SVMSC, which is effectively x = y−1(y) with reference to Figure 3. Suppose such a mapping
function is given by x = S(y). Then the specific expression of B-spline function reads

S(y1
, y2) =

n−1
∑

i=0

m−1
∑

j=0
Ni,p(y1)Nj,q(y2)Pi,j, (52)
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F I G U R E 3 Representation of an multi-scale configuration decorated with gradually varying microstructure (right panel), which can be
generated by space distortion enabled with a macroscopically smooth mapping function y = y(x).

where Pi,j =
(

x1
ij, x2

ij

)

∈ R2 represent the coordinates of the n ×m control points, Ni,p(y1) and Nj,q(y2) are the B-spline basis
functions (piecewise polynomials) of degree p and q, which are determined by the knot vectors U1×(n+p+1) and V1×(m+q+1),
respectively. One can refer to Appendix B for greater details associated with B-spline and the parameters adopted.

Among many properties of B-spline functions,39 the most intuitive benefit of adopting B-spline is its capability accom-
modating local adjustment. As the position of control points Pi,j gets changed, only the function values of S(y) within
the region (y1

, y2) ∈ [y1
i , y1

i+p+1) × [y
2
j , y2

j+q+1) is affected, which enables us to freely change the geometry of the model as
well as the geometry of microstructure inside, by simply moving the control points. Besides, as long as the periodic struc-
ture bears complete cells in the BL, as shown in Figure 3, the cell completeness in the resulting SVMSC with the use of
B-spline mapping is automatically guaranteed.

With the linkage between an SVMSC and a periodic structure established, the AH formulation is then enabled for the
interior of the configuration.18

Here the spatially variance is taken into account by means of the spatial gradient of the mapping function, i.e.,

Jij =
𝜕yi

𝜕xj
, for i, j = 1, … ,N. (53)

Upon spatial transformation, locally periodic oscillation can be assured w.r.t. the coordinates measured in y. Therefore,
for an SVMSC, the (non-dimensional) local coordinates should be defined by

z =
y(x)

h
, (54)

where h is recalled to be a parameter characterising the length of the microscopic cell, and scale separation here is then
introduced by

𝜕

𝜕x𝜖i
= 𝜕

𝜕xi
+ Jki

𝜖

𝜕

𝜕zk
, (55)

in the interior domain. For greater details about the asymptotic expansions of quantities in the SVMSC interior, one may
refer to Reference 18.

Such a rule for scale separation can be extended to the BL formulation. Here a natural coordinate system attached
to the BL of an SVMSC is constructed, that is, at each BL section, we always let xN = 0. Hence, we have 𝜕y

𝛼
∕𝜕xN =

0, 𝜕yN∕𝜕xN = 1. Thus the last component of z, that is, zN , stays perpendicular to the boundary of the referenced periodic
configuration, such as the one on the left side of Figure 3. This is equivalent to say that xN is along the direction
perpendicular to the actual domain boundary.
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T A B L E 2 Multi-scale assumptions (after non-dimensionalisation) of the interior and the boundary layer (BL) regions of configurations
infilled with spatially varying microstructure.

Interior region Boundary layer region

Rescale z = y∕𝜖 z = y∕𝜖

Free xi ∈ Ω ⧵ ̄̃Ω, zi ∈ Υs x
𝛼
∈ ̄̃Ω, zi ∈ Υ̃s

Variables i = 1, · · · ,N 𝛼 = 1, … ,N − 1; i = 1, … ,N

Scale 𝜕

𝜕x𝜖i
= 𝜕

𝜕xi
+ Jki

𝜖

𝜕

𝜕zk

𝜕

𝜕x𝜖
𝛼

= 𝜕

𝜕x
𝛼

+ Jk𝛼
𝜖

𝜕

𝜕zk

Separation 𝜕

𝜕x𝜖N
= JkN

𝜖

𝜕

𝜕zk

To this end, we introduce in association with the BL the same local coordinates as Equation (54), and scale separation
in the BL region is carried out by

𝜕

𝜕x𝜖𝛼
= 𝜕

𝜕x𝛼
+ Jk𝛼

𝜖

𝜕

𝜕zk
; 𝜕

𝜕x𝜖N
= JkN

𝜖

𝜕

𝜕zk
. (56)

In Table 2, the scale-separation operations are summarised within both the SVMSC interior and the BL in a
comparative manner.

3.2.2 BL formulation

Upon scale separation, the AH formulation can be derived against the SVMSC. In parallel with the derivation in
Section 2.3.2, we first give a pair of BL cell problems for variables ̃𝝃 and �̃�, that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

Jmj
𝜕

𝜕z̄m

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄CijklJrl
𝜕𝜉

s𝛽
k

𝜕z̄r

)

= 0, in Υ̃s; (57a)

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄CijklJrl
𝜕𝜉

s𝛽
k

𝜕z̄r

)

Jmjsm

|
|
|
|
|
|𝜕Υ̃i

= 0; (57b)

𝜉
s𝛽
i ,

𝜕𝜉
s𝛽
i

𝜕z̄j
periodic on 𝜕Υ̃p; (57c)

(

̄Cijk𝛼𝛿ks𝛿𝛼𝛽 + ̄CijklJrl
𝜕𝜉

s𝛽
k

𝜕z̄r

)

Jmjsm

|
|
|
|
|
|𝜕Υ̃m

= 0; (57d)

𝜉
s𝛽
i
|
|
|𝜕Υ̃e

= 0, (57e)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎩

Jmj
𝜕

𝜕z̄m

(

̄CijklJrl
𝜕�̃�

st
k

𝜕z̄r

)

= 0, in Υ̃s; (58a)

̄CijklJrl
𝜕�̃�

st
k

𝜕z̄r
Jmjsm

|
|
|
|
|𝜕Υ̃i

= 0; (58b)

�̃�
st
i ,

𝜕�̃�
st
i

𝜕z̄j
periodic on 𝜕Υ̃p; (58c)

̄CijklJrl
𝜕�̃�

st
k

𝜕z̄r
mj

|
|
|
|
|𝜕Υ̃m

=

(

̄Cijst + ̄CijklJrl
𝜕𝜉

st
k

𝜕z̄r

)

Jmjsm

|
|
|
|
|
|𝜕Υm

; (58d)

�̃�
st
i
|
|𝜕Υ̃e

= 0, (58e)
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where s is the outer normal at a boundary point of the cell after mapping, and the Dirichlet BCs are imposed at the SVMSC
boundary for the moment.

With the two variables ̃𝝃 and �̃� fully determined, the fine-scale stress field of the BL can be resolved by

�̃�
(0)
ij =

(

Cijk𝛼 +CijstJrt
𝜕𝜉

k𝛼
s

𝜕zr

)

𝜕u(0)k

𝜕x𝛼
+CijstJrt

𝜕�̃�
kl
s

𝜕zr

𝜕u(0)k

𝜕xl
. (59)

If the SVMSC is applied with an external load t
0

at the boundary, the original displacement BCs in the BL cell problems
(57) and (58) should be swapped by

(

Cijk𝛼𝛿ks𝛿𝛼𝛽 +CijklJrl
𝜕𝜉

s𝛽
k

𝜕zr

)

Jmjsm

|
|
|
|
|
|𝜕Υ̃e

= 0, (60)

and

CijklJrl
𝜕�̃�

st
k

𝜕zr
Jmjsm

|
|
|
|
|𝜕Υ̃e

= Σ(0)ist , (61)

respectively. Here the microscopically uniform traction components Σ(0)ist take the same definition as implied by
Equation (50).

3.3 Situations with different boundary orientations

The derivation above limits itself in situation where the overall boundary section of interest stays coincident with the
plane 𝜕Ω =

{

x|xN = 0
}

. When boundary sections bearing a different orientation, generalisation from the present results
is necessary.

The key idea is to transform the BL solutions intended for the boundary xN = 0 in accordance with the boundary of
interest. For example, the solutions for two types of BL cell problems on a certain boundary are assumed to be 𝜉

j𝛼
i , �̃�

jk
i ,

then for BL cells composed of isotropic base materials, their solutions can be associated with the original ones (with a
symbol ‘∧’) through the following formula

𝜉

j𝛼
i = Qik Qjs Q

𝛼𝛽

̂̃
𝜉

s𝛽
k ; (62a)

�̃�
jk
i = Qir Qjs Qkt ̂̃𝜂

st
r , (62b)

where Q is a certain orthogonal matrix, and the relevant proof is available in Appendix A.

4 COMPUTATIONAL FEASIBILITY ENABLED BY ML

With the asymptotic expressions provided, we now consider using surrogate models (referring exclusively to the neural
networks, or abbreviated as NNs) for predicting the local maximum von Mises stress (LMvMS) at each point near the
boundary on this basis. Note that the relationship between the equivalent elasticity tensor in the SVMSC interior and the
corresponding cell geometry should be superseded by a surrogate model likewise. But since the issue has been elaborated
in the work of Ma et al.,40 we are mainly focused on adopting the NNs to represent related solutions for the BL cell problem.

4.1 Localisation

Localised properties, such as strength, always see their priorities of engineering concerns which reflects the widespread
demand for the efficient prediction of the stress and location of local failure in such multi-scale structures. However,
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performing localisation operation on the basis of homogenisation results usually suffers from methodological paradox.
Homogenisation tends to return mean-field results, while material strength highly depends on the local geometric details.
Besides being different from the interior of an MSC, the BL region is often more susceptible to failure initiation. Here we
investigate the localisation formulation for the prediction of the LMvMSes near the boundary of an MSC.

As from the AH results, zero-order stress tensors �̃�(0)ij inside the BL region are obtained (Equations 46b and 59), whose
corresponding eigenvalue problems yield the principal stresses: �̃�(0)I > �̃�

(0)
II > �̃�

(0)
III (from large to small). Then the von Mises

stress of a particular point in the cell can be calculated by

�̃�
(0)
vM =

√
√
√
√

(

�̃�
(0)
I − �̃�

(0)
II

)2
+
(

�̃�
(0)
II − �̃�

(0)
III

)2
+
(

�̃�
(0)
III − �̃�

(0)
I

)2

2
. (63)

Suppose the configuration is made of materials which can withstand a maximum equivalent stress of 𝜎∗max. Thus for safety
assessment, the inequality

max
([

𝜎
(0)
vM

]

,

[

�̃�
(0)
vM

])

≤ 𝜎
∗
max, (64)

should be verified for all x ∈ Ω, z ∈ Υs
⋃
Υ̃s, where 𝜎

(0)
vM is the LMvMS calculated from a point in the domain interior.27

The symbol “[ • ]” here denotes the set of von Mises stresses corresponding to all points investigated.
Solution to the cell problems of periodic structures is independent of the macroscopic position a cell lies, so the elas-

ticity tensor of all global points can be represented by the C
H
ijkl of one single periodic cell. According to the expressions of

stresses presented in Equations (46a) and (46b), the local stress in a representative cell is directly obtained by the product
of solutions to a set of determinate cell problems and homogenised displacement gradient at the macro point of interest.
Thus, the calculation of local stresses in the periodic case is something straightforward, and a follow-up discussion will
focus on localisation scheme for the case of spatially varying microstructures.

For graded microstructures, the evaluation of stress fields 𝝈(0) and �̃�(0) calls for results of the interior cell and the BL
cell, respectively, which is computationally expensive due to the dependence of cell problems to be solved on macroscopic
coordinate the cell locates in. Thereby, in order to check the strength, one has to traverse the von Mises stresses at all
possible macro points and substitute them into Equation (64) for verification, during which cell problems in both regions
will be solved repeatedly and extensively, leading to a significant decrease in efficiency. To this end, ML comes to the
rescue.

Under the scale separation framework, each cell represented by Υ or Υ̃ is assumed to be attached to a macro point, in
the vicinity of which we can accordingly define the LMvMS, that is,

𝜎max(x) =
⎧

⎪

⎨

⎪
⎩

max
(

𝜎
(0)
vM

)

, z ∈ Υs;

max
(

�̃�
(0)
vM

)

, z ∈ Υ̃s,
(65)

such that 𝜎max is only a function of the macroscopic variable, which characterises the maximum von Mises stress around
point x.

Next, we aim to identify the conceptual definition given in the above equation as a function relation of factors affecting
the distribution of localised stress fields. Two factors are intuitive from Equation (59), that is the homogenised displace-
ment gradient 𝜕uH∕𝜕x and Jacobian components Jij. Besides, the determination of cell problems requires specifying the
corresponding geometric domains, whose information is completely stored in cell topology description function (TDF)
Φ. Finally, a definite but implicit relationship linking 𝜎max and multiple factors is identified, that is,

𝜎max = F
(

𝜀
H; J,Φ

)

, (66)

which is expected to be represented with the NNs.

4.2 Determination of input arguments

The NNs are expected to substitute the relation of stress-localisation (Equation 66) and relax the requirement to obtain
analytical solutions from the AH. To further improve the performance of NN fitting, one should first consider reducing
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the dimension of input arguments as much as possible, three major criteria are adopted here to determine the proper
inputs: (a) Extraction of geometric meaning; (b) Compression of sample space40; (c) Input rescaling.27

First, extraneous variables can be eliminated with a thorough understanding of the geometric meanings of some
arguments. For instance, the inverse matrix of Jacobian matrix J−1 maps a square cell to a parallelogram, and such a
process can be fully described by three parameters 𝜆, 𝜃1 and 𝜃2 (See Figure 4), generally, the following limits are imposed
on their ranges

1
𝜆max

≤ 𝜆 ≤ 𝜆max, 0 ≤ 𝜃1 < 2𝜋, 𝜃min ≤ 𝜃2 ≤ 𝜋 − 𝜃min, (67)

to prevent distortion of cells. At the cell level, we can drop the rotation angle 𝜃1 because the change of elasticity tensor
due to rotation is explicit. Thus only the effects of stretching and torsional deformation are considered.

Notice that there are two ways to decompose the deformation mode of a microscopic cell, that is, deformation followed
by rotation or rotation followed by deformation. As demonstrated, only the first way enables C

H
ijkl in the real space to be

derived from the solution of cells ignoring the rotation angle.41 Consequently, the specific decomposition is expressed as

J−1 =

[

cos 𝜃1 𝜆 cos(𝜃1 + 𝜃2)
sin 𝜃1 𝜆 sin(𝜃1 + 𝜃2)

]

=

[

cos 𝜃1 −sin𝜃1

sin 𝜃1 cos 𝜃1

][

1 𝜆 cos 𝜃2

0 𝜆 sin 𝜃2

]

= QR, (68)

where Q is an orthogonal matrix representing pure rotation and R is an upper triangular matrix representing pure defor-
mation. We ignore rigid body rotation of cell in the subsequent data set construction process, so the local Jacobian matrix
will be the special case of Q = I,where I is a identity matrix, denoted as J̃ = R−1.

For the second criterion, it is proved that 𝜎max remains unchanged when each component of J̃ is multiplied by the
same non-zero constant, therefore we require det

(

J̃
)

= 1, that is, J̃′ij =
[

det
(

J̃
)]− 1

N J̃ij.
And for cases of linear elasticity, the criterion (c) allows Equation (66) to be re-expressed as

𝜎max = 𝜀
∗F
(

𝜀
H

𝜀
∗ ; 𝜆, 𝜃2,Φ

)

, (69)

here, for the interior cell, we choose 𝜀
∗ =
√
(

uH
11
)2 +

(

uH
22
)2 +

(

𝛾
H
12
)2
, 𝛾

H
12 = uH

12 + uH
21, while for the BL cell, 𝜀

∗ =
√
(

uH
11
)2 +

(

uH
22
)2 +

(

uH
12
)2 +

(

uH
21
)2, uH

ij = 𝜕uH
i ∕𝜕xj, for i, j = 1, … ,N. The argument set regarding the homogenised

displacement gradient is thus normalised, and the complexity of the corresponding network input is reduced by one
dimension in a sense.

4.3 Construction of data sets

Low discrepancy sequence is adopted to ensure the input data points form a more complete coverage of the space they
span. Based on the theoretical derivation of the preceding AH process, we can naturally distil the core steps to generate

F I G U R E 4 Geometric meaning behind the mapping between microscopic cells. 𝜆 measures the length relative to the other edge, 𝜃1 is
the counterclockwise rotation angle of the cell and 𝜃2 is the angle between adjacent sides of a parallelogram.
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T A B L E 3 Detailed steps for generating a single data point for the neural networks (NNs) characterising the local maximum stresses
calculated based on the solutions for the interior and the boundary layer (BL) regions, respectively.

Interior region Step 1. Specifying Values of Input Arguments. For an interior cell with a given TDF, specific values are
assigned to 𝜆 and 𝜃2 within the range specified in Equation (67) to form the cell geometry Υs, meanwhile a
set of uH

11,uH
22, 𝛾

H
12 is assigned within a certain range;

Step 2. Solving Cell Problems. A solvable cell problem (that with periodic BCs) has been uniquely identified in
the previous step, whose solution yields 𝜉jk

i . Results at boundary 𝜕Υm are extracted separately for subsequent
matching conditions;

Step 3. Computing the Local Stress Tensor in an interior cell. With the calculated uH
ij and 𝜉

jk
i , the stress tensor

𝜎
(0)
ij at each point in cell domain are available;

Step 4. Computing the Output Value of NN. By solving eigenvalues for each set of 𝜎(0)ij , von Mises stress 𝜎vM
i is

then obtained, i denotes the ith point selected in cell. When i traversing all points, 𝜎max = max
(

𝜎
vM
i

)

gives
the output of the NN. Thus a data point

(

uH
11,uH

22, 𝛾
H
12, 𝜆, 𝜃2,Φ; 𝜎max

)

in the input–output space of the NN
summarising results of the interior problem is presented.

Boundary layer Step 1. Specifying Values of Input Arguments. Specific values are assigned to 𝜆 and 𝜃2 likewise, forming the
geometry of a BL cell Υ̃s, also a set of homogenised displacement gradient uH

11,uH
22,uH

12,uH
21 is assigned within

a certain range;

Step 2. Solving Cell Problems. Two types of cell problems (57) and (58) can be solved in domain defined in the
previous step to get 𝜉j𝛼

i , �̃�
jk
i . The values 𝜉

jk
i
|
|
|𝜕Υm

extracted before are needed for the determination of �̃�jk
i ;

Step 3. Computing the Local Stress Tensor in an interior cell. Stress �̃�(0)ij is available from Equation (59) based
on the results obtained above;

Step 4. Computing the Output Value of NN. Similar to the operation of the interior region, network output in
this case goes like 𝜎max = max

(

�̃�
vM
i

)

. Thus a data point
(

uH
11,uH

22,uH
12,uH

21, 𝜆, 𝜃2,Φ; 𝜎max
)

in data set of the NN
summarising results of the BL problem is presented.

a data point, and the specific implementation process varies in the two regions. Such steps corresponding to the interior
cell and BL cell are specified in Table 3.

Theoretically, an infinite number of data points can be generated by repeating the above steps under various values of
input arguments, which is well suited for parallel computing since no correlation exists between different data points of
the NN related to the interior cells; but for the NN characterising results of the BL, once solutions of the interior cell are
determined, the corresponding generating processes are also independent of each other and can be carried out in parallel.

4.4 Specification of argument values and performance of network training

In this subsection, we will present specific parameters selected in this article for the determination of cell geometry and
the construction of NN. Take cell configurations shown in Figure 5 as an example.

For data generalisation, we need to assign values randomly to the two sets of controlling variables as discussed in
Section 4.2. For the design variables carrying the information of the macroscopic variance, we refer to the geometrically
meaningful parameters (r, 𝜆, 𝜃2) shown in Figure 4 instead of the components of the original Jacobian matrix J. The
variable r is chosen to capture the change in the TDFΦ of the initial unit cell. Here the parameters (r, 𝜆, 𝜃2) are randomly
evaluated within [0.1, 0.3] ×

[

1∕4, 4
]

×
[

𝜋∕6, 5𝜋∕6
]

, and 300 samples are collected for them.
As for the design variables indicating the on-site homogenised quantities, the number of such variables is differ-

ent between the input arguments for the NN summarising the results of the interior cell problems and those for the
NN summarising the BL cell problems. Note that an interior cell problem can be parameterised by three components,
that is,

(

uH
11,uH

22, 𝛾
H
12
)

, whose (random) evaluations are all constrained in the interval [−1, 1]. We here collect 300 sam-
ples for these three components. But for a BL cell problem, four parameters

(

uH
11,uH

22,uH
12,uH

21
)

are required, while the
bounds for the evaluation stay the same as [−1, 1]. Thus, the number of samples must be larger, and 400 samples are
considered. Therefore, we generate 300 × 300 = 90, 000 sets of data points to train a NN to represent the results of the
interior problem, and 300 × 400 = 120, 000 sets of data points to train a NN that characterises the results related to the BL
problem.
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(A) (B)

F I G U R E 5 Specific configurations of the representative cells. (A) Geometric patterns of an interior cell (left), a boundary layer (BL)
cell taken from the boundary section on the left side of the domain (middle) and one taken from the upper side of the domain (right). The
above three types of cells constitute the interior region, displacement BL region and stress BL region of an multi-scale configuration (MSC),
respectively, whose BL cells bearing a geometry different from the interior cells. The thickness of the left layer on the middle cell is 0.02 times
the original length (usually taken as 1). (B) Another type of unit cell, which alone constitutes an MSC.

The training of both types of network models is implemented based on the Statistics and Machine Learning Toolbox
12.4 in MATLAB® R2022b. Levenberg–Marquardt algorithm is adopted here for the NN training models, in which the
activation function is Sigmoid function and the initialisation method is Nguyen–Widrow method. We follow the general
practice of arbitrarily selecting 70%, 15%, 15% of the data set as the training set, test set, and validation set for the NN,
respectively. For the NN constructed based on the interior solutions, three hidden layers are adopted, with 45 neurons
in the first layer and 40 neurons in the last two layers, that is, the structure of this network is (45, 40, 40); as for the NN
constructed based on the BL solutions, the network structure of (55, 55, 50) is selected corresponding to the BL cell subject
to displacement BCs at its outer boundary and (50, 50, 45) for that subject to stress BCs.

It is obvious to tell from the zero-order stress expressions of periodic structures that data points of both networks take
the form

(

uH
11,uH

22, 𝛾
H
12; r
)

. As explained in Section 4.1, the corresponding cell problems only need to be solved once, but
we still consider employing the NN to replace such a solving-and-storing process for the sake of tremendously reducing
the memory and disc footprint. In this case, N1 = 250,N2 = 300 are adopted for both data sets, and structures of the two
NNs mentioned above are (30, 30, 25) and (45, 45, 35), respectively.

The performance of the trained network is measured by the root-mean-square error (RMSE). The lower the RMSE,
the better the network should perform. On a graphic account, more data points get concentrated around line where the
trained output equals the corresponding feeding data, such as those shown in Figure 6, and good performance from the
trained neural networks is thus demonstrated.

5 NUMERICAL EXAMPLES

Based on the previous theoretical groundwork, several numerical computations including cases of periodic and
gradually-varying microstructures, BL cells subject to displacement and stress BCs, rectangular and non-rectangular
domains, are implemented on the COMSOL Multi-physics® v. 5.6. platform42 to illustrate the impact of BL effects in
different problems investigated.

For all MSCs involved hereafter, solid part materials are assumed to be elastic, isotropic and the specific values are
selected as follows: the Young’s modulus is fixed to E = 200 GPa and Poisson’s ratio 𝜈 = 0.3. A plane strain state is consid-
ered here to serve as the two-dimensional simplified model of the problem, and the lengths of all specimens in the third
dimension is assumed to be 1 m. For simplicity, the non-dimensional BL thickness (Equation 9) is fixed at about 1 (see
Reference 34 for systematic investigation of the case with square unit cells, and the case of non-square cells will be given
in Section 5.1), and we will not include the surface term (Equation 44) in the minimisation of energy functional.

5.1 Remarks on theoretical studies

The former rigorous treatment of the BL enables the exponential decay of quantities associated with the BL region in
the direction perpendicular to the structure boundary,28-31 which is quite inconvenient for practical implementation.
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F I G U R E 6 Regression graphs of the trained neural networks (NNs). (A–C) are all the cases of periodic structures, corresponding to the
interior cell, boundary layer (BL) cell on a fixed edge and that on a traction-free edge, respectively; (D–F) are all under the case of spatially
varying multi-scale configurations which also correspond to the same meaning as the above three, respectively. Root mean square errors of
the networks training for each case are marked below the corresponding subfigure. (A) RMSE = 0.0087%; (B) RMSE = 0.012%; (C) RMSE =
0.012%; (D) RMSE = 0.12%; (E) RMSE = 0.13%; (F) RMSE = 0.24%.

Therefore, recent work has favoured an approximate way to extract the BL region separately for brute force computa-
tion,32,33 and this requires a pre-determination of the extent of the BL influence. Drago and Pindera have numerically
demonstrated that for a periodic porous structure with square unit cell, the BL effect is confined to one layer of the
constituent cell,34 meaning that one period thickness suffices for the approximation of the BL behaviour.

Here, a case of a periodic porous structure with non-square constituent cell is presented to further illustrate the extent
of such BL effect. We consider a periodic structure consisting of 6 × 5 parallelogram unit cells with a fixed left end, a given
displacement u = 0.05 dm imposed on the right end, and the remaining two boundaries free. The cell takes a geometry
similar to the left panel of Figure 4, with 𝜃1 = 0, 𝜃2 = pi∕3, but it is normalised to its area. In this section, the stress
components recovered through traditional AH method are used to examine the accuracy of stress calculations near the
boundary by comparing them with those obtained by fine-mesh FEA. From the results shown in Figure 7, it can be seen
that when 𝜖 is not very large, the difference in each stress component is confined to a one-period thick layer near the
boundary.

5.2 The case of periodic porous structures

For configurations infilled with periodic microstructure, the geometry of BL cells can differ from that of the interior cells,
and in fact any cell that smoothly connects to the interior part can be used to construct the BL region. In the discussion
within this subsection, two situations will be examined: (a) the cases with geometrically identical cells where the BL cells
are identical to the interior cells in shape; (b)the cases with geometrically different cells where the BL cells are different
from the interior cells in shape.

5.2.1 Cases with geometrically identical cells

We first consider a spatially periodic structure of size 7 dm × 4 dm formed by a hollow unit cell as shown in Figure 8. This
MSC is fixed to its left side, while a uniformly distributed displacement field is applied on its right side at a magnitude of
u1 = 0.05 dm.
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F I G U R E 7 Illustration of the extent of the boundary layer (BL) effect in a periodic porous structure composed of parallelogram unit
cells. The left column represents the stress components recovered through the AH method, denoted 𝜎

AH; the three figures in the middle
column represent the stress components directly given by fine-mesh finite element analysis, denoted 𝜎

FM; the right column figures show the
difference between the first two, that is, 𝜎AH − 𝜎

FM. (A) Comparison of stress component 𝜎11; (B) Comparison of stress component 𝜎22; (C)
Comparison of stress component 𝜎12.

Since the surface energy term due to the BL is neglected, the macroscopic homogenisation problem is identical to that
in the AH method, particularly for periodic structures, the equivalent elasticity tensor has only to be calculated once to
obtain the moduli of the whole entity. In the AH theory, solution to such a porous structure can be approximated by the
combination of solutions to microscopic cell problems and macroscopic homogenisation problem, and the homogenised
displacement gradients are obtained by following this traditional operation, thus determining network inputs related to
the loading environment.

Now we set about investigating the reliability of two types of NNs constructed based on solutions for the interior region
and the BL region, respectively, in predicting the LMvMSes near the configuration boundary, with those extracted from
direct fine-mesh FEA of the MSC being served as the benchmark. The specific regions for extracting fine-scale computa-
tion results are indicated in Figure 8. Note that the “corner cells”, which are also located at the structure boundary, are
not included in regions above, because they are no more periodic along any direction and have to be modelled separately
for further analysis. Thus no discussion concerning “corner cells” is included for the time being.

The computation results from the present BL-homogenisation-based scheme are compared with those from fine-scale
solutions, as well as those from the traditional homogenisation method (without the inclusion of BL cells). On the field
boundary that lies on the left edge of the MSC, the relative deviation from the fine-scale results is found both limited,
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F I G U R E 8 Periodic structure consists of identical unit cells taking the geometry of Figure 5B. The left boundary is fixed and a uniform
displacement u1 = 0.05 dm is imposed on the right end. Blue shaded areas denote regions composed of boundary layer (BL) cells subject to
(A) displacement boundary conditions (BCs) u = 0; (B) stress BCs 𝝈 ⋅ n = 0, respectively, on their outer boundaries.
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F I G U R E 9 Case: Periodic microstructure with unit cells taking the geometry of Figure 5B. Comparison between values predicted by
the neural networks (NNs) with the benchmark obtained from direct fine-mesh finite element analysis (FEA) of the multi-scale
configuration (MSC). Two subfigures represent the examination of the LMvMSes in the blue shaded area (A) and (B) illustrated in Figure 8,
respectively. Here solid lines denote quantities related to the relative errors and dashed lines denote those related to the absolute values.
Explanations of abbreviations in the legend are listed. BL, boundary layer; FS, fine-scale; RE, relative error; W/O, without.

that is, ≤ 5% (Figure 9A), with and without the inclusion of BL cells. But on the free edge lying on the top of the
structure, as shown in Figure 9B, the use of BL formulations effectively decreases the relative error from about 19% to
below 6.1%.

Note that the results presented in Figure 9 are all limited to the case the thickness of the BL (Equation 9) being the
same as that of the interior cell, which is an approximate treatment. However, there is a possibility that the BL effects
span multiple cell layers. We follow the previous steps to investigate the influence on final results when the BL thickness
is changed to two cells. From the comparison of predictive results shown in Figure 10, the impact on the prediction
accuracy caused by increasing the number of cells contained in one BL cell does not have a significant improvement over
the original one, which coincides with the conclusion drawn in Section 5.1.

5.2.2 Cases with geometrically different cells

For the second situation, we consider a configuration of size 7.02 dm × 4 dm where the microstructure near the boundary
differs from that in the interior. As shown in Figure 11, the specific configurations of constituting cells can be seen more
clearly in the upper left panel. Here BCs of the structure are consistent with those described in the previous section and
the thicknesses of both thin layers attached to the left and right ends are 0.01 dm.
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F I G U R E 10 Comparison of the predictive accuracy between the neural network (NN) constructed based on boundary layer (BL) cells
composed of one single unit cell and that constructed based on BL cells composed of two cells. Two subfigures correspond to results extracted
from two regions (A) and (B) in Figure 8, respectively. Here solid lines denote quantities related to the relative errors and dashed lines denote
those related to the absolute values. ‘One Cell’ indicates the case where the BL cell consists of one single cell. ‘Two Cells’ represents the case
where the BL cell consists of two unit cells.

F I G U R E 11 Periodic structure consists of different unit cells taking the geometry of Figure 5A. Blue shaded areas here have the same
meanings as in Figure 8, and the thicknesses of both thin layers attached to the left and right ends are fixed to 0.01 dm.

Similar to Section 5.2.1, the comparison between predictions and the benchmark has also been presented in this
situation in Figure 12. From which it is obvious that the predicted values given by the NN characterising the interior local
maximum stress show a great deviation from fine-scale results, and the relative errors even exceed 32% when predicting
the LMvMSes near the free edge of the MSC (Figure 12B), while the NN characterising the local maximum stress in the
BL still maintains high accuracy.

5.3 Cases with spatially varying structures

Unlike each macroscopic point corresponds to the identical representative cell in periodic structures, the constituent cells
of an SVMSC may undergo deformation and rotation, such local behaviour are fully reflected by the Jacobian matrix
(Equation 53) of the mapping function. As stated in Section 4.2, rotation angle 𝜃1 is neglected in the process of generating
data set for the consideration of reducing the input dimension, so all values here predicted by the NNs are on the premise
of 𝜃1 = 0.
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F I G U R E 12 Case: Periodic microstructure with unit cells taking the geometry of Figure 5A. Two subfigures here represent the
examination of the LMvMSes in the blue shaded area (A) and (B) illustrated Figure 11, respectively.

Consequently, in practical gradually varying microstructures, the input and output of the NNs should be adjusted
in conjunction with the cell deformation mode, the specific approach is to apply QR factorisation (Equation 68) to the
Jacobian matrix J at a macroscopic point to get two matrices corresponding to pure deformation (R) and rotation (Q),
respectively. The former is intended for solving the network input arguments related to cell configuration, and the latter
one provides rotation angle of a cell at a certain position, whose role is twofold: first, ‘recovering’ outputs of the NN to
actual values in the practical structure (for instance, predictions of the equivalent elasticity tensor can be used to solve
the homogenisation problem only if they are transformed to those at specific rotation angles); second, ‘returning’ the
real structure solutions to the original values that in the cases absence of rigid body rotation (for instance, homogenised
strains obtained from real macro problems can be fed into the NNs only if they have been transformed to the cell local
coordinate system). The transformation of quantities involved above is expressed as:

C
H
ijkl = Qip Qjq Qks Qlt ̂C

H
pqst; (70a)

𝜀
H
ij = Qpi Qqj �̂�

H
pq, (70b)

where symbol “∧” in these two relations indicates quantities given directly by the NN and Qij are components of the
orthogonal matrix Q.

An SVMSC here contains the gradually varying behaviour of infilled microstructures in a regular or even theoreti-
cally an arbitrary domain. If directly carrying out homogenisation in the actual configuration domain for an SVMSC with
irregular boundaries will bring about great inconvenience, which is because it takes some time to establish an irregu-
lar model either by interpolating a large number of points to fit the boundary curves or reversing the control points to
reconstruct the boundary represented by B-spline. Moreover, coordinates of points in space [0, 1]N are required in order
to get the mapping Jacobian matrices at them. Hence in light of the aforementioned difficulties, we consider transfer-
ring homogenisation computation process for equivalent entities with various geometries to the unit space [0, 1]N . For
detailed information about degrees of the B-spline basis functions and coordinates of control points adopted in numerical
examples, one can refer to Appendix B.

5.3.1 Rectangular domain infilled with graded microstructure

In this subsection, an SVMSC in a regular rectangular domain of size 7 dm × 4 dm is examined as shown in the right
panel of Figure 13, its left boundary is fixed and a uniformly distributed traction of magnitude p1 = 100, 000 N is imposed
on its right end along positive direction of axis x𝜖1. The control points correspond to this configuration are given by
Equation (B2).
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F I G U R E 13 Spatially varying microstructure filled in a rectangle. BCs should be modified when considering geometry mapping

operation, for instance, the external force p1 on the right edge becomes p∗1 =
√
(

J−1
12
)2 +

(

J−1
22
)2, J−1

12 and J−1
22 here represent the (1,2) and (2,2)

component of the inverse matrix of J.

F I G U R E 14 Case: Graded microstructure in a regular rectangular domain. Macroscopic homogenisation problem computed in the
unit domain [0, 1]2. (A) Contour plot of homogenised displacement component along the positive direction of coordinate axis y𝜖1; (B) contour
plot of homogenised displacement component along the positive direction of y𝜖2. (A) uH

1 ; (B) uH
2 .

For a two-dimensional homogenisation problem, governing equation with Jacobian operators introduced by the
mapping from original equivalent entity to a unit square should be established, and the corresponding BCs should be
modified. The actual elasticity tensor at each macroscopic point is obtained by substituting the output of the NN into
Equation (70a), thus the original homogenisation problem can be solved equivalently in a unit square domain (see
Figure 14).

Note that derivative terms of the displacements obtained here are not equal to the actual homogenised displacement
gradients and need to combine the Jacobian components at a particular point to recover to the actual values. But it does
not end there, such values are based on the global coordinate system, in which every unit cell has a rotation angle of its
own, so the actual strain field has to be transformed to the cell local coordinate system to further serve as the input of the
NN. Such a transformation relation is represented by Equation (70b).

In this example, the predictive performance of the NNs are also well investigated. From Figure 15, both the two NNs
are found to present good results for the LMvMSes near the fixed structure boundary, with relative errors basically below
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F I G U R E 15 Case: Graded microstructure in a regular rectangular domain. Comparison between values predicted by the two neural
networks and the benchmark obtained from direct fine-mesh finite element analysis of the multi-scale configuration.

F I G U R E 16 Spatially varying microstructure filled in a region bearing irregular shape.

10% (see Figure 15A), while in the case of free boundary, Figure 15B shows that the NN characterising the LMvMS in the
BL demonstrates greater reliability in the LMvMS prediction.

5.3.2 Non-rectangular domain infilled with graded microstructure

Our discussion is extended to structure where the domain boundaries become curved, as shown in Figure 16. Note that
the MSC in Figure 16 is generated by transforming a periodic structure with B-spline mapping functions, and the corre-
sponding coordinates of control points in this case given by Equation (B3). One advantage of adopting B-spline for such
mapping operation is that the boundary cells stay complete no matter how the cells get distorted locally. As discussed
above, even if the domain boundaries are curved (irregular), the procedure of homogenisation computation can also be
implemented in the region [0, 1]2 as outlined in Section 5.3.1.

Figure 17 shows the distribution contour plots of the two components of the homogenised displacement field after
mapping to the unit square domain. The comparison of network performance can be seen clearly from Figure 18,
from which one can draw a conclusion that the NNs constructed based on solutions for the BL problem presents pre-
dicted values much closer to the benchmark given by fine-scale results, with small relative deviations under different
circumstances.
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F I G U R E 17 Case: Graded microstructure in a non-rectangular domain. Macroscopic homogenisation problem computed in the unit
domain [0, 1]2. (A) Contour plot of homogenised displacement component along the positive direction of coordinate axis y𝜖1; (B) contour plot
of homogenised displacement component along the positive direction of y𝜖2. (A) uH

1 ; (B) uH
2 .
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F I G U R E 18 Case: Graded microstructure in a non-rectangular domain. Comparison between values predicted by the two neural
networks and the benchmark obtained from direct fine-mesh finite element analysis of the multi-scale configuration.

6 CONCLUSIONS AND DISCUSSION

In the present article, we propose a framework for analysing the boundary layer behaviour of multi-scale configurations.
Combined with the use of ML, the scheme is found to accurately and efficiently capture several key local mechanical
quantities, such as boundary-localised strength, in the vicinity of the overall boundary. To be more specific, the novelty
here is demonstrated in two aspects.

Firstly, in a theoretical aspect (Sections 2 and 3), a new model of the BL region in the AH method is established by
abandoning the original local-periodicity assumption. which presents two types of cell problems corresponding to the BL
(Equations 21 and 22). We further show the surface balance equation (Equation 31), from the perspective of AH, that
the homogenised displacement should satisfy on the equivalent solid surface, where the forms of the elasticity constants
(Equation 30) are given by solutions for the BL cell and no longer preserve the symmetry of general fourth-order elasticity
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tensor. Moreover, an later investigation on the energy of the BL region gives the surface energy (Equation 44) of an MSC,
which, as seen in Equation 45, is a small quantity compared to the bulk counterpart if there is a significant contrast
between the BL thickness and the structure length.

Secondly, in a computational aspect (Sections 4 and 5), it realises reliable and efficient predictions of the LMvMSes
near the boundary of complex porous structures and provides the safety assessment for such configurations at the bound-
ary. With a combinative use of the AH and ML, the original implicit relationship between the local quantity of interest
and its related arguments can then be simplified to a function relation (Equation 66) that numbers in, numbers out.

Although the current framework has exhibited certain reliabilities, more accurate predictions are still in needs in
some scenarios. Topics for further studies can be summarised as follows.

Firstly, the representative cells involved here are all of finite size. The solution given by the AH theory converges to
the actual one only when the small parameter 𝜖 defined by Equation (2) is infinitesimal, thus for cells in practical porous
structures, 𝜖 will never reach zero and the error caused by this will also never be eliminated, only reduced. The resulting
truncation error is roughly of the same order-of-magnitude as 𝜖.

Secondly, the contribution of surface energy is omitted in actual computation. Such a treatment is accurate as 𝛿 =
d∕L → 0 and may introduce a large error if 𝛿 is not small enough, however, for elliptic Dirichlet problems, the effect of
BL decays exponentially as the distance from the boundary increases,31 therefore resulting in a tolerated error, which is
roughly of magnitude (𝛿). For further improvement of accuracy, the surface energy term should be taken into account
in the system energy functional to be minimised and the surface balance equations also need to be used instead of the
real loading conditions of the homogenised solid.

Thirdly, the introduction of the B-spline does greatly endow the freedom to modify the configuration geometry, but
it also brings with it the possibility of excessive local deformation, resulting in a larger gradient of the entries of the
Jacobian matrices J in this region compared to its surroundings. Therefore under this circumstance, the strain gradient
model (higher-order theory) has to be adopted,17 that is, the material deformation or mechanical response at a point is
associated with a higher-order strain gradient. So as to capture the local response, such as local stress field, more accu-
rately, the effects of the additional terms brought by the higher-order expansion of displacement field should be carefully
considered.

Finally, BL effects where inelastic effects possibly induced from singular behaviours, such as, crack initiation, etc., are
present, should also be examined in depth in future.
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APPENDIX A. PROOF OF TRANSFORMATION BETWEEN DIFFERENT BOUNDARY
ORIENTATIONS

We now prove that Equations (62a) and (62b) are correct. Relations of the solutions for the periodic cell under different
scaling factors and rotation angles have been given in the case of conformal mapping,41 along this lines, the rotation of
the BL cell is investigated. First of all, the components of the elasticity tensor remain the same in any reference coordinate
for a configuration with isotropic base material, that is,

Cijkl = Qia Qjb Qkc Qld Cabcd; (A1a)

Cijk𝛼 = Qia Qjb Qkc Q
𝛼d Cabcd, (A1b)

where Q stands for an orthogonal matrix. To demonstrate the transformation of cell solutions under different rotation
angles, “characteristic equations” of the two types of BL cell problems must be specified, which here indicate equations
independently contain the meaning of each free index of the generalised displacement. For example, the free indices st of
variable �̃�

st
k in the governing equation of Equation (22) do not carry any physical meaning (like prestrain) if the equation

is separately examined. And the proper “characteristic equations” of BL cell problems can be derived from the discussion
on generalisation in Section 3.2

Jmj
𝜕

𝜕zm

(

Cijk𝛼𝛿ks𝛿𝛼𝛽 +CijklJrl
𝜕𝜉

s𝛽
k

𝜕zr

)

= 0; (A2a)

CijklJrl
𝜕�̃�

st
k

𝜕zr
mj

|
|
|
|
|𝜕Υ̃c

=

(

Cijst +CijklJrl
𝜕𝜉

st
k

𝜕zr

)

mj

|
|
|
|
|
|𝜕Υc

, (A2b)

𝛼, 𝛽 = 1, … ,N − 1, while J, which originally reflects stretching, rotating and twisting of a cell, only represents the rigid
body rotation here, corresponding to R = I in Equation (68). Thus the relationship between the Jacobian matrix and the
orthogonal matrix is

Jij = Qji. (A3)

Substituting Equations (A1), (A3), into Equation (A2a) gives

Qjm
𝜕

𝜕zm

(

Qia Qjb Qse Q
𝛽f Cabef + Qia Qjb Qkc Qld Cabcd Qlr

𝜕𝜉

s𝛽
k

𝜕zr

)

= 0, (A4)

based on a relation: Qji Qjk = 𝛿ik, i, j, k = 1, · · · ,N for the orthogonal matrix Q, we multiply both ends of Equation (A4)
by Qip to get

𝜕

𝜕zm

(

Qse Q
𝛽f Cpmef + Qkc Cpmcr

𝜕𝜉

s𝛽
k

𝜕zr

)

= 0, (A5)

http://cn.comsol.com


PAN et al. 33 of 34

further consider the substitution of indices in the above equation, and the new equation is obtained by replacing the
original indices p, m, c, r, k with i, j, k, l, m, that is,

𝜕

𝜕zj

⎛

⎜

⎜

⎜
⎝

Qse Q
𝛽f Cijef +Cijkl

𝜕

(

Qmk 𝜉

s𝛽
m

)

𝜕zl

⎞

⎟

⎟

⎟
⎠

= 0, (A6)

For the reference BL cell, its rotation matrix is an identity matrix, so the corresponding governing equation is reduced
to the form of that in periodic case. If we denote the incomplete index of the reference BL cell takes the value 𝛼, the one
after rotation takes the value 𝛽, then we have the relation: when 𝛼 = 𝛽, Qij = 0, for i ≠ j; when 𝛼 ≠ 𝛽, Qij = 0, for i = j. A
comparison between Equations (A6) and (21a) gives the following equation

Qmk 𝜉

s𝛽
m = Qst Q

𝛽𝛼

̂̃
𝜉

t𝛼
k , for 𝛼, 𝛽 = 1, … ,N − 1, (A7)

where “∧” indicates solutions correspond to the reference BL cell and are already known. Again, multiplying Qnk at
both ends of the equation and then replacing the indices n, s, m, t, 𝛽, 𝛼 with i, j, k, s, 𝛼, 𝛽, Equation (62a) is finally
proven.

With the above process, the proof of transformation for another BL cell problem is straightforward, but two points
should be stated: first, the proof here is carried out based on the ‘characteristic equation’ (Equation A2b) instead of the
governing equation, second, transformation relation of the interior cell rotation should be identified 𝜉

jk
i = Qir Qjs Qkt 𝜉

st
r .

The detailed proof of Equation (62b) is thus omitted here.

APPENDIX B. DETAILS ON SPECIFIC SETTINGS ASSOCIATED WITH B-SPLINE

The specific parameters related to B-spline mapping are listed below. A two-dimensional pattern formed by Equation (52)
can be generally viewed as a net woven by two families of B-splines corresponding to two orthogonal directions, respec-
tively. The number of control points along these two directions is: n = 8,m = 6 and the maximum degrees of B-spline
basis functions are selected as p = q = 2.

In this article, ‘clamped’ type B-spline is selected as the mapping representation, in which the corresponding knot
vectors are in such a form: nodes at both ends have a repeat degree of D + 1, D represents the maximum degree of the
B-spline basis function, the rest of the nodes are uniformly distributed with a repeat degree of 1, that is,

U =
⎡

⎢

⎢

⎢
⎣

0, · · · , 0
⏟⏟⏟

p+1

, y1
p+1, · · · , y1

n−1, 1, · · · , 1
⏟⏟⏟

p+1

⎤

⎥

⎥

⎥
⎦

, V =
⎡

⎢

⎢

⎢
⎣

0, · · · , 0
⏟⏟⏟

q+1

, y2
q+1, · · · , y2

m−1, 1, · · · , 1
⏟⏟⏟

q+1

⎤

⎥

⎥

⎥
⎦

. (B1)

For example, if the number of control points N = 6 and the maximum degree D = 2, then the knot vector U =
[

0, 0, 0, 1
4
,

1
2
,

3
4
, 1, 1, 1

]

.
The coordinates of control points corresponding to the B-spline adopted in rectangular multi-scale structure in

Section 5.3.1 take the form

P =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪
⎩

[0, 0] [0.5, 0] [1.5, 0] [2.6, 0] [3.8, 0] [5, 0] [6.5, 0] [7, 0]

[0, 0.5] [0.5, 0.5] [1.5, 0.7] [2.6, 0.6] [3.8, 0.5] [5, 0.4] [6.5, 0.5] [7, 0.5]

[0, 1.6] [0.5, 1.6] [1.5, 1.7] [2.6, 1.6] [3.8, 1.6] [5, 1.6] [6.5, 1.5] [7, 1.6]

[0, 2.6] [0.5, 2.6] [1.5, 2.7] [2.6, 2.5] [3.8, 2.6] [5, 2.5] [6.5, 2.4] [7, 2.6]

[0, 3.5] [0.5, 3.5] [1.5, 3.4] [2.6, 3.2] [3.8, 3.5] [5, 3.4] [6.5, 3.4] [7, 3.5]

[0, 4] [0.5, 4] [1.5, 4] [2.6, 4] [3.8, 4] [5, 4] [6.5, 4] [7, 4]

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪
⎭

. (B2)
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The coordinates of control points corresponding to the B-spline adopted in non-rectangular multi-scale structure in
Section 5.3.2 take the form

P =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪
⎩

[0, 0] [0.5, 0.05] [1.6, 0.1] [2.8, 0.05] [4, 0] [5.2,−0.05] [6.48,−0.1] [6.98, 0]

[0, 0.5] [0.5, 0.55] [1.6, 0.8] [2.8, 0.7] [4, 0.7] [5.2, 0.5] [6.46, 0.7] [6.96, 0.55]

[0, 1.6] [0.5, 1.65] [1.6, 1.7] [2.8, 1.6] [4, 1.6] [5.2, 1.6] [6.42, 1.5] [6.92, 1.6]

[0, 2.6] [0.5, 2.65] [1.6, 2.7] [2.8, 2.5] [4, 2.6] [5.2, 2.5] [6.38, 2.4] [6.88, 2.5]

[0, 3.5] [0.5, 3.55] [1.6, 3.6] [2.8, 3.55] [4, 3.49] [5.2, 3.45] [6.34, 3.4] [6.84, 3.5]

[0, 4] [0.5, 4.05] [1.6, 4.1] [2.8, 4.05] [4, 4] [5.2, 3.95] [6.3, 3.9] [6.8, 3.95].

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪
⎭

(B3)
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